Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(10): 653, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528154

RESUMO

The use of fast-growing tree species, such as Casuarina glauca for wastewater treatment could improve the quality of wastewater and offer an ecological and sustainable system. A hydroponically experiment was conducted to evaluate C. glauca ability to remove heavy metals from secondary treated urban wastewater (SWW). The effect of the SWW on plant biomass, some physiological parameters, heavy metals (Cd, Pb, Ni and Zn) bioaccumulation and removal from wastewater was evaluated. After 28 days, wastewater treatment C. glauca showed high efficiency for the removal of pathogenic bacteria such as faecal coliforms and faecal streptococci from SWW. A significant reduction was found for electrical conductivity, biochemical oxygen demand, chemical oxygen demand and suspended solids with 31%, 92%, 83% and 31% respectively. Casuarina glauca plants were able to remove heavy metal ions Cd, Pb, Ni and Zn from SWW and the removal efficiency was 92%, 77%, 83% and 73%, respectively. Casuarina glauca plants accumulated concentrations of heavy metals (Cd, Pb, Ni and Zn) in their roots higher than the shoots. SWW had a remarkable effect on plant growth and photosynthetic capacity in C. glauca compared with plants grown in tap water (control). The results indicated that C. glauca can act as scavengers of heavy metal ions from polluted water and confirms their ability for wastewater treatment.


Assuntos
Metais Pesados , Purificação da Água , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Metais Pesados/análise , Águas Residuárias/análise
2.
Microorganisms ; 10(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056506

RESUMO

The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure-volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses.

3.
Microorganisms ; 8(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352645

RESUMO

The pollution of soils by heavy metals resulting from mining activities is one of the major environmental problems in North Africa. Mycorrhizoremediation using mycorrhizal fungi and adapted plant species is emerging as one of the most innovative methods to remediate heavy metal pollution. This study aims to assess the growth and the nutritional status of ectomycorrhizal Pinus halepensis seedlings subjected to high concentrations of Pb, Zn, and Cd for possible integration in the restoration of heavy metals contaminated sites. Ectomycorrhizal and non-ectomycorrhizal P. halepensis seedlings were grown in uncontaminated (control) and contaminated soils for 12 months. Growth, mineral nutrition, and heavy metal content were assessed. Results showed that ectomycorrhizae significantly improved shoot and roots dry masses of P. halepensis seedlings, as well as nitrogen shoot content. The absorption of Pb, Zn, and Cd was much higher in the roots than in the shoots, and significantly more pronounced in ectomycorrhizal seedlings-especially for Zn and Cd. The presence of ectomycorrhizae significantly reduced the translocation factor of Zn and Cd and bioaccumulation factor of Pb and Cd, which enhanced the phytostabilizing potential of P. halepensis seedlings. These results support the use of ectomycorrhizal P. halepensis in the remediation of heavy metal contaminated sites.

4.
Ecotoxicology ; 29(4): 417-428, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166695

RESUMO

The use of wastewater for irrigation in agroforestry is cost-effective for water management. It is well established that rhizospheric microorganisms such as N2-fixing bacteria are able to modulate rhizobioaugmention and to boost phyoremediation process. To date, no study has been conducted to evaluate biological effects of rhizobioaugmentation in Casuarina glauca trees induced by their symbiont N-fixing actinobacteria of the genus Frankia. The objective of the present study was to evaluate the main effects of rhizobioaugmentation on the biological activity in the C. glauca's rhizosphere and on C. glauca growth in soils irrigated with industrial wastewater. Two Frankia strains (BMG5.22 and BMG5.23) were used in a single or dual inoculations of C. glauca seedlings irrigated with industrial wastewater. Soil enzymes activity related to carbon, phosphorus, sulfur and nitrogen cycling were measured. Results revealed that the BMG5.22 Frankia strain increases significantly the size (dry weight) of C. glauca shoots and roots while dual inoculation increased significantly the root length. Surprisingly, ß-glucosidase (BG), cellobiohydrolase (CBH), ß-N-acetylglucosaminidase (NAGase), aryl sulfatase (AS), acid phosphatase (AP), alkaline phosphatase (AlP), glycine aminopeptidase (GAP), leucine aminopeptidase (LAP), and peroxidase (PER) activity in the rhizosphere decreased significantly in soils treated with the two strains of symbionts. This suggests no positive correlations between enzymatic activity and C. glauca growth.


Assuntos
Irrigação Agrícola/métodos , Fagales/microbiologia , Frankia/fisiologia , Rizosfera , Águas Residuárias/microbiologia
5.
Plant Physiol Biochem ; 142: 125-136, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31279860

RESUMO

Willow, due to the extensive root system, high transpiration rates and ability to accumulate large amounts of cadmium, is considered particularly useful for green remediation practices. In this study two different willow species, Salix viminalis and Salix alba, were used to assess possible differences in their ability of cadmium accumulation and to analyse in detail the physiology of their response to treatments with this metal using a multidisciplinary approach. Plants were grown in hydroponics and treated with 0, 50 and 100 µM Cd2+ (CdCl2) for 7 and 14 days. Cadmium content, oxidative stress, both evaluated by biochemical and histochemical techniques, antioxidant response, leaf stomatal conductance and photosynthetic efficiency were measured in control and treated roots and/or leaves. The two willow species removed cadmium with a high efficiency from the growth solution; however, the highest contents of Cd recorded in plants grown in the presence of the lower Cd concentrations suggest a limited capacity of metal accumulation. No photochemical limitation characterised treated plants, probably due to the ability to store large amounts of Cd in the root compartment, with reduction of damage to the photosynthetic machinery. S. viminalis, able to uptake cadmium also in the root apical region, seemed to be a more efficient accumulator than S. alba and, thanks to a relatively higher antioxidant response, did not show a higher level of oxidative stress. On the basis of the above, the two plant species, in particular S. viminalis, are confirmed as useful for cadmium phytostabilisation/phytoextraction.


Assuntos
Cádmio/farmacocinética , Cádmio/toxicidade , Salix/efeitos dos fármacos , Salix/metabolismo , Antioxidantes/metabolismo , Cloreto de Cádmio/toxicidade , Carotenoides/metabolismo , Clorofila/metabolismo , Enzimas/metabolismo , Hidroponia , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Especificidade da Espécie , Distribuição Tecidual
6.
Environ Monit Assess ; 188(2): 99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26780418

RESUMO

Water is a scarce natural resource around the world which can hamper the socio-economic development of many countries. The Mediterranean area, especially north Africa, is known for its semi-arid to arid climate, causing serious water supply problems. Treated wastewater (TWW) is being used as an alternative strategy for recycling wastewater. It is also a potential source of nutrients for reforestation with certain plant species such as poplar trees, a useful wood resource, and even for phytoremediation purposes. In the present study, we used treated wastewater to irrigate two clones of 1-year-old poplar trees (Populus nigra cv. I-488 and Populus alba cv. MA-104) for 90 days. After a stipulated time, a comparative study was made of the effects of TWW on growth parameters, acquisition of essential minerals (Na, Fe and Zn) and pollutants (Cd, Pb, As and Ni) as well as the enrichment of secondary metabolites such as polyphenolic, flavonoid and tannin compounds which could contribute to the growth and development of poplar plants. The results of this study show that the use of TWW increased P. alba's biomass production by 36% and also enhanced its Cd and Pb accumulation capacity. We also found that P. alba has considerable potential to be used as an alternative plant species for reforestation and/or phytoremediation of toxic metals from contaminated water or effluent.


Assuntos
Metais Pesados/análise , Populus/crescimento & desenvolvimento , Poluentes do Solo/análise , Águas Residuárias , África do Norte , Biodegradação Ambiental , Monitoramento Ambiental , Populus/química , Reciclagem , Árvores/metabolismo , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...